Delphine Capron

Delphine Capron

2011 Dec - Transcriptomic analysis of wheat (Triticum aestivum) grain development: involvement of E3 ligases and hormones related genes

Wheat grain is an important source of food, feed, and industrial raw materials, but current production levels cannot meet world needs. Elucidation of the molecular mechanisms underlying wheat grain development will contribute valuable information to improving wheat cultivation. One of the most important mechanisms implicated in plant developmental processes is the Ubiquitin-Proteasome System (UPS). Among several implications of the UPS, it has become clear that it plays an essential role in hormone signaling. In particular E3 ubiquitin ligases, from the UPS, have been demonstrated to play critical roles in hormone perception and signal transduction. During these work, wheat cv. Recital were grown in optimum growth conditions. By comparing eleven consecutive time-points from 40°CJ (2 days after anthesis) to 500°CJ (around 25 days after anthesis), 9284 differentially expressed genes were identified during this study. A comparison of these genes in terms of time revealed dynamic transcript accumulation profiles with major re-programming events that occurred during the time intervals of 80-120°Cdays and 220-240°Cdays. The gene expression comparison allows observing genes potentially involved in cell division or grain filling stage. An emphasis was made on the E3 ligases and hormone-related genes (Abscisic acid, Auxin, Brassinosteroid, Cytokinine, Gibberellic acid, Ethylene and Jasmonic acid). 173 E3 ligase coding genes and 126 hormone–related genes were found to be differentially expressed during the cell division and grain filling stages, with a different expression profile for each family. A model describing the timing of the involvement of these genes is proposed to provide a framework for the design of future experiments and for the identification of genes and pathways for further characterization. A majority of the E3 SCF (SKP1-Cullin-F-box), APC/C, Cul3-BTB and Ubox are found expressed in early wheat developmental stages (cell division stage). A majority of auxin, jasmonic acid and brassinostéroïde related genes were found to be up-regulated in early wheat developmental stages while ethylene and abscisic acid related genes were found to be activated during grain filling stage. The differential expression of genes involved in E3 ligase pathways and plant hormone signalling suggested that phytohormones and UPS crosstalk might play a critical role in the wheat grain developmental process. A meta-analysis of these genes led to the identification of 26 E3 ligase candidate genes and 12 hormones-related candidate genes that are preferentially expressed in the endosperm. The functional model that we proposed and the identification of candidate genes should help to better understand wheat grain development.