Immunity of Plants and Multistress

(former: "Cereal Diseases")

Context and objectives

Every year, wheat crops are subjected to intense parasitic pressures. These originate from a complex set of bio-aggressors, which attack wheat plants all along their developmental cycle, from seed to ear. The most damaging diseases of fungal origin (Septoria leaf blotch, Fusarium head blight and rust) are responsible for significant declines in annual yields and quality losses, and even sanitary issues. Within the framework of the agroecological transition, the mobilization of the natural plant immunity is and will be one of the best strategies to ensure, in association with innovative agronomic solutions, an effective control of pests and pathogens, while reducing our dependence towards conventional phytosanitary products.

Research topics

The projects of the IPM team, structured around three complementary research axes, have a double objective: (1) to provide original information on the molecular and physiological mechanisms involved in the control and development of these two wheat diseases, and (2) to make new genes, new genetic combinations and original mechanisms available for breeding. This intends to broaden the spectra (STB) and the levels of resistance (STB, FHB), and to improve their durability. The challenge is to build sustainable resistances by diversifying the sources of resistances, improving the knowledge of their genetic, molecular and physiological bases and combining them with other strategies (Integrative Pest Management).

  • Genetic determinism and function of resistance to STB (Leader C. Saintenac)
    • Identification of new sources of resistance (accessions, major genes, QTLs)
    • Cloning and functional analysis of genes that confer resistance to STB (Stb genes)
    • Molecular and physiological characterization of mechanisms mediated by Stb genes
  • Sensitivity factors, an alternative to the use of classical resistances (Leader L. Bonhomme)
    • Integrative molecular physiology of the interaction between wheat and the mycotoxigenic fungus Fusarium graminearum
    • Identification of effectors and genomic determinants of F. graminearum aggressiveness and their targets in plant
    • Specificity of the molecular and physiological mechanisms of interaction: comparative analysis of Fusarium versus Microdochium
  • Impact of environmental factors on the plasticity/stability of resistances (Leader T. Langin, G. Marliac)
    • Analysis of the specific response of wheat to a combination of biotic x abiotic stress (high [CO2]atm, drougth, ...)
    • Contribution of wheat-associated microbial communities (microbiota) to wheat resistance - Holobiont concept

Team members

  • Ludovic BONHOMME (Pr UCA, group leader)
  • Cyrille SAINTENAC (CR INRAE, co-leader)
  • Thierry LANGIN (DR CNRS)
  • Gaëlle MARLIAC (MC VetAgroSup)
  • Frédéric CHOULET (IR INRAE)
  • Florence CAMBON (AI INRAE)
  • Géraldine PHILIPPE (TR INRAE)
  • Stéphane SAUVAT (TR VetAgroSup)
  • Laura PAIRE (Postdoc)
  • Christelle GINOT (PhD student)
  • Caroline FREY (PhD student)
  • Ninon MAGLIARASCHI (PhD student)
  • Marie UNVERICH (PhD student)
  • Léa LESSERTEUR (Engineer)
  • Justin SAVAJOLS (Engineer)
  • Emmanuel OZIEGBE (Master student)
  • Nans BOITEUX (Master student)

PhD Students having defended their thesis recently

  • Larissa ADAMIK (2025)
  • Shimlal AYILALATH (2025)

Publications (recent)

2025

  • Sampaio AM, Tralamazza SM, Mohamadi F, De Oliveira Y, Enjalbert J, Saintenac C, Croll D. (2025). Diversification, loss, and virulence gains of the major effector AvrStb6 during continental spread of the wheat pathogen Zymoseptoria tritici. PLoS Pathog. 2025 Mar 31;21(3):e1012983. https://doi.org/10.1371/journal.ppat.1012983
  • Hafeez AN, Chartrain L, Feng C, Cambon F, Clarke M, Griffiths S, Hayta S, Jiang M, Keller B, Kirby R, Kolodziej MC, Powell OR, Smedley MA, Steuernagel B, Xian W, Wingen LU, Cheng S, Saintenac C, Wulff BBH, Brown JKM. (2025). Septoria tritici blotch resistance gene Stb15 encodes a lectin receptor-like kinase. Nat Plants. 2025 Mar;11(3):410-420. https://doi.org/10.1038/s41477-025-01920-2
  • Meile L, Carrasco-López C, Lorrain C, Kema GHJ, Saintenac C, Sánchez-Vallet A. (2025). The Molecular Dialogue Between Zymoseptoria tritici and Wheat. Mol Plant Microbe Interact. 2025 Mar;38(2):118-133. https://doi.org/10.1094/MPMI-08-24-0091-IRW
  • Adamik L, Dou PS, Philippe G, Blanc R, Vásquez-Ocmín P, Marti G, Langin T, Bonhomme L. (2025). Suboptimal pre-anthesis water status mitigates wheat susceptibility to fusarium head blight and triggers specific metabolic responses. Sci Rep. 2025 Apr 6;15(1):11773. http://doi.org/10.1038/s41598-025-96159-4
  • Rocher F, Bancal P, Fortineau A, Philippe G, Label P, Langin T, Bonhomme L. (2025). Unravelling ecophysiological and molecular adjustments in the photosynthesis-respiration balance during Fusarium graminearum infection in wheat spikes. Physiol Plant. Mar-Apr;177(2):e70150. http://doi.org/10.1111/ppl.70150

2024

  • BATTACHE M., SUAREZ-FERNANDEZ M., KLOOSTER M., CAMBON F., SANCHEZ-VALLET A., LEBRUN M.-H., LANGIN T., SAINTENAC C. (2024). Stomatal penetration: the cornerstone of plant resistance to the fungal pathogen Zymoseptoria tritici. BMC Plant Biology, 24 (1), 736, http://doi.org/10.1186/s12870-024-05426-5
  • MATHIEU L., REDER M., SIAH A., DUCASSE A., LANGLANDS-PERRY C., MARCEL T., MOREL J.-B., SAINTENAC C., BALLINI E. (2024). SeptoSympto: a precise image analysis of Septoria tritici blotch disease symptoms using deep learning methods on scanned images. Plant Methods, 20 (1), 18, http://doi.org/10.1186/s13007-024-01136-z
  • QUTB A., CAMBON F., MCDONALD M., SAINTENAC C., KETTLES G. (2024). The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus Zymoseptoria tritici. BMC Plant Biology, http://doi.org/10.1186/s12870-024-04930-y
  • ROCHER F., DOU S., PHILIPPE G., MARTIN M.-L., LABEL P., LANGIN T., BONHOMME L. (2024). Integrative systems biology of wheat susceptibility to Fusarium graminearum uncovers a conserved gene regulatory network and identifies master regulators targeted by fungal core effectors. BMC Biology, 22 (1), http://doi.org/10.1186/s12915-024-01852-x
  • SUFFERT F., LE PRIEUR S., GELISSE S., DZIALO E., SAINTENAC C., MARCEL T. (2024). Estimating the frequency of virulence against an Stb gene in Zymoseptoria tritici populations by bulk phenotyping on checkerboard microcanopies of wheat near‐isogenic lines. Plant Pathology, http://doi.org/10.1111/ppa.13894
  • THAUVIN J.-N., GELISSE S., CAMBON F., LANGIN T., MARCEL T., SAINTENAC C. (2024). The genetic architecture of resistance to septoria tritici blotch in French wheat cultivars. BMC Plant Biology, 24 (1212), http://doi.org/10.1186/s12870-024-05898-5

2023

  • ADAMIK L., LANGIN T., BONHOMME L. (2023). A generic part of specific combined responses to biotic and abiotic stresses in crops: Overcoming multifaceted challenges towards new opportunities. Frontiers in Plant Science, 14 (1140808), http://doi.org/10.3389/fpls.2023.1140808
  • AMEZROU R., AUDEON C., COMPAIN J., GELISSE S., DUCASSE A., SAINTENAC C., LAPALU N., LOUET C., ORFORD S., CROLL D., AMSELEM J., FILLINGER S., MARCEL T. (2023). A secreted protease-like protein in Zymoseptoria tritici is responsible for avirulence on Stb9 resistance gene in wheat. PLoS Pathogens, 19 (5), e1011376, http://doi.org/10.1371/journal.ppat.1011376
  • BALLOT A., DORE J., REY M., MEIFFREN G., LANGIN T., JOLY P., DREUX-ZIGHA A., TAIBI A., PRIGENT-COMBARET C. (2023). Dimethylpolysulfides production as the major mechanism behind wheat fungal pathogen biocontrol, by Arthrobacter and Microbacterium actinomycetes. Microbiology Spectrum, http://doi.org/10.1128/spectrum.05292-22
  • SAADAOUI M., FAIZE M., BONHOMME L., BENYOUSSEF N. O., KHARRAT M., CHAAR H., LABEL P., VENISSE J.-S. (2023). Assessment of Tunisian Trichoderma Isolates on Wheat Seed Germination, Seedling Growth and Fusarium Seedling Blight Suppression. Microorganisms, 11 (6), http://doi.org/10.3390/microorganisms11061512
  • SIMON L., LANGIN T., NOWAK B., MARLIAC G. (2023). Perennial soil characteristics are the main factor driving in vitro inhibition of the wheat fungal pathogen Fusarium graminearum in a french case study. Soil Use and Management, http://doi.org/10.1111/sum.12998

2022

  • BATTACHE M., LEBRUN M.-H., SAKAI K., SOUDIERE O., CAMBON F., LANGIN T., SAINTENAC C. (2022). Blocked at the Stomatal Gate, a Key Step of Wheat Stb16q-Mediated Resistance to Zymoseptoria tritici. Frontiers in Plant Science, 13, http://doi.org/10.3389/fpls.2022.921074
  • NOWAK B., MICHAUD A., MARLIAC G. (2022). Soil-climate factors have a greater influence on the presence of winter cover crops than regulatory constraints in France. Agronomy for Sustainable Development, 42 (2), 28, http://doi.org/10.1007/s13593-022-00770-y
  • NOWAK B., MICHAUD A., MARLIAC G. (2022). Assessment of the diversity of crop rotations based on network analysis indicators. Agricultural Systems, 199, http://doi.org/10.1016/j.agsy.2022.103402
  • NOWAK B., MICHAUD A., MARLIAC G. (2022). Dataset about the adoption of winter cover crops at the municipality level for mainland France. Data in Brief, 44, 108544, http://doi.org/10.1016/j.dib.2022.108544
  • ROCHER F., ALOUANE T., PHILIPPE G., MARTIN M.-L., LABEL P., LANGIN T., BONHOMME L. (2022). Fusarium graminearum infection strategy in wheat involves a highly conserved genetic program that controls the expression of a core effectome. International Journal of Molecular Sciences, 23 (3), 22, http://doi.org/10.3390/ijms23031914
  • DAVAL A., POMIES V., DOSSA J. S., RIOU V., LOPEZ D., PONCET C., PERNACI M., COCHARD B., JACOB F., BILLOTTE N., TISNE S. (2022). Identification of Fusarium wilt resistance loci in two major genetic backgrounds for oil palm breeding. Industrial Crops and Products, 187, 115291, http://doi.org/10.1016/j.indcrop.2022.115291

2021

  • NURIT E., BORDES J., BALFOURIER F., PAUX E., PIQUET A., FOSSATI D., BRANLARD G. (2021). Association between SNP Markers and 11 Vitamin Contents in Grains of a Worldwide Bread Wheat Core Collection. Journal of Agricultural and Food Chemistry, 69 (14), 4307–4318, http://doi.org/10.1021/acs.jafc.0c07763
  • FABRE F., URBACH S., ROCHE S., LANGIN T., BONHOMME L. (2021). Proteomics-based data integration of wheat cultivars facing fusarium graminearum strains revealed a core-responsive pattern controlling fusarium head blight. Frontiers in Plant Science, 12, 644810, http://doi.org/10.3389/fpls.2021.644810
  • LASSERRE - ZUBER P., CHAVEE M., FAURE M., ROCHE S., SOUDIERE O., MUTTERER J., MAIGNEL J.-P., POUSSET E., LEM P., LEREMBOURE M., DEVAUX P., SERRE F., CADOT V., SAINTENAC C. (2021). IRIGAM - Identification de résistances à l’infection des grains par Fusarium graminearum et à l’accumulation des mycotoxines au sein des variétés de blé françaises grâce à la mise en place de nouvelles technologies de phénotypage. Innovations Agronomiques, 84, 85-95, http://doi.org/10.15454/3q89-7f93
  • NOWAK B., MARLIAC G., MICHAUD A. (2021). Estimation of winter soil cover by vegetation before spring-sown crops for mainland France using multispectral satellite imagery. Environmental Research Letters, 16 (6), 1-11, http://doi.org/10.1088/1748-9326/ac007c
  • RAYAPURAM N., JARAD M., ALHORAIBI H., BIGEARD J., ABULFARAJ A., VOLZ R., MARIAPPAN K. G., ALMEIDA-TRAPP M., SCHLOFFEL M., LASTRUCCI E., BONHOMME L., GUST A., MITHOFER A., AROLD S., PFLIEGER D., HIRT H. (2021). Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity. Proceedings of the National Academy of Sciences of the United States of America, 118 (3), e2004670118, http://doi.org/10.1073/pnas.2004670118
  • SAINTENAC C., CAMBON F., AOUINI L., VERSTAPPEN E., GHAFFARY S. M. T., POUCET T., MARANDE W., BERGES H., XU S., JAOUANNET M., FAVERY B., ALASSIMONE J., SANCHEZ-VALLET A., FARIS J., KEMA G., ROBERT O., LANGIN T. (2021). A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nature Communications, 12 (1), 433, http://doi.org/10.1038/s41467-020-20685-0
  • STEPHENS C., OLMEZ F., BLYTH H., MCDONALD M., BANSAL A., TURGAY E. B., HAHN F., SAINTENAC C., NEKRASOV V., SALOMON P., MILGATE A., FRAAIJE B., RUDD J., KANYUKA K. (2021). Remarkable recent changes in the genetic diversity of the avirulence gene AvrStb6 in global populations of the wheat pathogen Zymoseptoria tritici. Molecular Plant Pathology, http://doi.org/10.1111/mpp.13101
  • ALOUANE T., RIMBERT H., BORMANN J., ABIGAIL GONZALEZ-MONTIEL G., LOESGEN S., SCHAFER W., FREITAG M., LANGIN T., BONHOMME L. (2021). Comparative genomics of eight fusarium graminearum strains with contrasting aggressiveness reveals an expanded open pangenome and extended effector content signatures. International Journal of Molecular Sciences, 22 (12), http://doi.org/10.3390/ijms22126257

2020

  • FABRE F., ROCHER F., ALOUANE T., LANGIN T., BONHOMME L. (2020). Searching for FHB Resistances in Bread Wheat: Susceptibility at the Crossroad. Frontiers in Plant Science, 11, 1-8, http://doi.org/10.3389/fpls.2020.00731
  • NOWAK B., MARLIAC G. (2020). Optimization of carbon stock models to local conditions using farmers' soil tests: A case study with AMGv2 for a cereal plain in central France. Soil Use and Management, 1-13, http://doi.org/10.1111/sum.12608

2019

  • BESSET-MANZONI Y., JOLY P., BRUTEL A., GERIN F., SOUDIERE O., LANGIN T., PRIGENT-COMBARET C. (2019). Does in vitro selection of biocontrol agents guarantee success in planta? A study case of wheat protection against Fusarium seedling blight by soil bacteria. PLoS ONE, 14 (12), e0225655, http://doi.org/10.1371/journal.pone.0225655
  • FABRE F., BORMANN J., URBACH S., ROCHE S., LANGIN T., BONHOMME L. (2019). Unbalanced roles of fungal aggressiveness and host cultivars in the establishment of the Fusarium head blight in bread wheat. Frontiers in Microbiology, 10, 2857, http://doi.org/10.3389/fmicb.2019.02857
  • FABRE F., VIGNASSA M., URBACH S., LANGIN T., BONHOMME L. (2019). Time-resolved dissection of the molecular crosstalk driving Fusarium head blight in wheat provides new insights into host susceptibility determinism. Plant, Cell and Environment, 42 (7), 2291-2308, http://doi.org/10.1111/pce.13549
  • PECRIX Y., BUENDIA MARTIN L. F., PENOUILH-SUZETTE C., MARECHAUX M., LEGRAND L., BOUCHEZ O., RENGEL D., GOUZY J., COTTRET L., VEAR F., GODIARD L. (2019). Sunflower resistance to multiple downy mildew pathotypes revealed by recognition of conserved effectors of the oomycete Plasmopara halstedii. The Plant Journal, 97 (4), http://doi.org/10.1111/tpj.14157
  • GATTI M., CAMBON F., TASSY C., MACADRE C., GUERARD F., LANGIN T., DUFRESNE M. (2019). The Brachypodium distachyon UGT Bradi5gUGT03300 confers type II fusarium head blight resistance in wheat. Plant Pathology, 68 (2), 334-343, http://doi.org/10.1111/ppa.12941