Bruno Bouffier

Bruno Bouffier

2014 Dec - Genetic and ecophysiological dissection of tolerance to drought and heat stress in bread wheat: from environmental characterization to QTL detection

A stagnation of wheat yield was reported in France and other countries worldwide since the 1990’s, which incriminated mainly drought and heat stress. Improving the European wheat tolerance to them is of first importance. This study aimed to investigate the genetic determinism of the tolerance to such stresses. Three CIMMYT bread wheat populations combining complementary heat and drought adaptive habits were grown in Northern Mexico under irrigated, drought and heat-irrigated treatments from 2011 to 2013. The trial network comprised 15 trials and both physiological and agronomic traits were scored. First, an environmental characterization methodology was developed and resulted in the identification of six main environmental scenarios in the network. A representative environmental covariate was extracted from each of them. Then, a factorial regression model leaded to the dissection of the genotype-by-environment interaction and highlighted differential stress sensitivity of the germplasm. Finally, a multi-environmental QTL detection resulted in the discovery of genomic regions involved in the control of both physiological and agronomic traits and the study of their sensitivity to the environment. From the environmental characterization to the QTL detection, this study resulted in the development of a tool for breeders which may enable the evaluation of the potential of any genotypes in front of a range of environment, but also the identification of genomic regions involved in the control of the tolerance to drought and heat stress in bread wheat. This may help in improving the tolerance of the European bread wheat germplasm to drought and heat stress.